Μια ράβδος στρέφεται επιμηκύνοντας το ελατήριο.

Μια ομογενής ράβδος ΑΒ μήκους ℓ=1m και μάζας Μ= 15kg, μπορεί να στρέφεται σε κατακόρυφο επίπεδο, γύρω από άρθρωση στο άκρο της Β και ισορροπεί σε οριζόντια θέση δεμένη στο άκρο κατακόρυφου νήματος σε σημείο της
Γ, όπου (ΑΓ)=0,2m. Παίρνουμε ένα ιδανικό ελατήριο με σταθερά k=225Ν/m και φυσικό μήκος ℓο=(4/15)m και τεντώνοντάς το, συνδέουμε τα άκρα του στο άκρο Α της ράβδου και στο σημείο πρόσδεσης του νήματος Δ, οπότε ο άξονας του ελατηρίου σχηματίζει με τη ράβδο γωνία φ, όπου ημφ=0,8 (συνφ=0,6).
i)  Να βρεθεί η τάση του νήματος.
ii) Σε μια στιγμή κόβουμε το νήμα. Να υπολογισθεί η αρχική επιτάχυνση του άκρου Α της ράβδου.
iii) Να βρεθεί ως προς το άκρο Β της ράβδου, η στροφορμή και ο ρυθμός μεταβολής της στροφορμής της ράβδου, τη στιγμή που το ελατήριο θα γίνει κατακόρυφο, αν δεν αναπτύσσονται τριβές στην άρθρωση.
Δίνεται η ροπή αδράνειας της ράβδου ως προς την άρθρωση
ΙΒ= 1/3 Μℓ2 και g=10m/s2.
ή

 πλάτος ταλάντωσης κατά την επιφανειακή συμβολή..docxΜια
ράβδος στρέφεται επιμηκύνοντας το ελατήριο

Advertisements

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s