Εκροή από ένα δοχείο με δύο υγρά.

Σε ένα μεγάλο κατακόρυφο σωλήνα ηρεμούν δύο υγρά, νερό με πυκνότητα ρ1=1.000kg/m3 και λάδι πυκνότητας ρ2=700kg/m3, όπως στο σχήμα, όπου h1=0,8m και h2=0,7m.  Μια τάπα, κλείνει μια οπή του δοχείου, εμβαδού Α=0,4cm2, η οποία βρίσκεται σε ύψος h=0,2m από την βάση του σωλήνα.

i)  Να υπολογιστεί η δύναμη που δέχεται η τάπα από το νερό, καθώς και η δύναμη την
οποία δέχεται από τα τοιχώματα  του σωλήνα, θεωρώντας αμελητέο το βάρος της.
ii) Σε μια στιγμή βγάζουμε την τάπα, οπότε μέσα σε ελάχιστο χρόνο, αποκαθίσταται μια μόνιμη και στρωτή ροή. Να υπολογιστεί η ταχύτητα εκροής, θεωρώντας ότι η διατομή του σωλήνα, είναι πολύ μεγαλύτερη από την διατομή της οπής.
iii) Αν η διατομή του σωλήνα έχει εμβαδόν Α1=2cm2, να υπολογιστεί ξανά η ταχύτητα εκροής, καθώς και ο ρυθμός με τον οποίο κατεβαίνει η πάνω επιφάνεια του λαδιού.
Δίνεται η επιτάχυνση της βαρύτητας g=10m/s2, η ατμοσφαιρική πίεση pατ=105Ν/m2,
ενώ και οι δύο παραπάνω ροές να θεωρηθούν μόνιμες και στρωτές ροές ιδανικού ρευστού.
Παρατήρηση: Η ταχύτητα εκροής του νερού δεν θα παραμένει σταθερή, αλλά θα μειώνεται καθώς θα κατεβαίνει η
στάθμη του λαδιού, οπότε γενικά, η ροή δεν θα είναι μόνιμη. Η ζητούμενη ταχύτητα εκροής, είναι αυτή που θα αποκατασταθεί μέσα σε ελάχιστο χρόνο, μόλις απομακρυνθεί η τάπα και την οποία για ένα μικρό διάστημα μπορούμε να θεωρήσουμε σταθερή.
ή
Advertisements

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s