Ένα σώμα πάνω σε αμαξίδιο.

Ένα σώμα Σ μάζας m=2kg ηρεμεί πάνω σε ένα ακίνητο αμαξίδιο μάζας Μ=3kg, δεμένο στο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=100Ν/m, το οποίο έχει το φυσικό μήκος του ℓ0=40cm.
Σε μια στιγμή (t0=0) ασκούμε στο αμαξίδιο μια σταθερή οριζόντια δύναμη μέτρου F=4Ν, μέχρι τη στιγμή t1=10s, όπου η δύναμη παύει να ασκείται.
i) Αμέσως μόλις ασκηθεί η δύναμη F (για t=0+), να βρεθεί ο ρυθμός μεταβολής της ορμής:
α) του σώματος Σ και
β) του αμαξιδίου.
ii) Να υπολογιστεί η ορμή και ο ρυθμός μεταβολής της ορμής του συστήματος των δύο σωμάτων, τη στιγμή t2 = 4s.
iii) Κάποια στιγμή (t3<10s) το ελατήριο έχει μήκος ℓ1=45cm. Να βρεθεί ο ρυθμός μεταβολής της ορμής κάθε
σώματος τη στιγμή αυτή.
iv) Μια άλλη στιγμή (t4 >10s) η ταχύτητα του αμαξιδίου έχει μέτρο υ2= 10m/s, με φορά προς τα δεξιά, ενώ το ελατήριο έχει μήκος ℓ1=20cm. Να βρεθούν για τη στιγμή αυτή:
α) Η ταχύτητα του σώματος Σ.
β) Ο ρυθμός μεταβολής της ορμής κάθε σώματος.
v) Πόση ενέργεια μεταφέρθηκε στο σύστημα μέσω του έργου της δύναμης F;
Δίνεται ότι δεν αναπτύσσονται τριβές, ούτε μεταξύ σώματος Σ και αμαξιδίου, ούτε μεταξύ αμαξιδίου και εδάφους.
Υπενθυμίζεται ότι η δύναμη του ελατηρίου είναι ανάλογη της παραμόρφωσής του, σύμφωνα με το νόμο του Ηοοke Fελ=k∙Δℓ, ενώ ένα παραμορφωμένο ελατήριο έχει δυναμική ενέργεια η οποία υπολογίζεται από την εξίσωση Uελ=½ k∙(Δℓ)2.
ή
Advertisements

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s