Ισορροπίες και τριβές

1Γύρω από έναν τροχό  ακτίνας R και μάζας  Μ=10kg, τυλίγουμε ένα αβαρές νήμα, το οποίο αφού το περάσουμε από μια αβαρή τροχαλία, στο άλλο άκρο του κρεμάμε έναν αβαρή δίσκο. Ο τροχός ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστές τριβής μ=μs=0,6, ενώ εμποδίζεται να κινηθεί από ένα εμπόδιο ύψους h=R, με το οποίο ο τροχός δεν εμφανίζει τριβές.

  1. Να βρείτε τις δυνάμεις που ασκούνται στον τροχό, πριν βάλουμε κάποια σταθμά στο δίσκο.
  2. Μπορεί ο τροχός να υπερπηδήσει το εμπόδιο, αν τοποθετήσουμε στο δίσκο κατάλληλα σταθμά;
  3. Τοποθετούμε στο δίσκο σταθμά μάζας m=2kg. Να εξετάσετε αν ο δίσκος θα κατέβει ή όχι, υπολογίζοντας και την δύναμη που ασκεί το εμπόδιο  στον τροχό.
  4. Αν το οριζόντιο επίπεδο ήταν λείο, ενώ αντίθετα αναπτυσσόταν τριβές μεταξύ τροχού και εμποδίου με συντελεστές τριβής μ=μs=0,6, τότε:

α) Να υπολογιστεί η δύναμη στον τροχό από το οριζόντιο επίπεδο, όταν στο  δίσκο βάζαμε σταθμά m1=2,5kg.

β) Ποια η μάζα των σταθμών που πρέπει να τοποθετηθούν στο δίσκο, ώστε ο τροχός να χάσει την επαφή του με το οριζόντιο επίπεδο;

Δίνεται η ροπή αδράνειας του τροχού ως προς κάθετο άξονα που περνά από το κέντρο μάζας του Ι= ½ ΜR2 και g=10m/s2.

Απάντηση:

ή

%ce%b1%ce%b1%ce%b1%ce%b11 Ισορροπίες και τριβές
%ce%b1%ce%b1%ce%b1%ce%b13 Ισορροπίες και τριβές
Advertisements

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s