Πώς εφαρμόζουμε την ΑΔΣ;

Η ομογενής ράβδος ΚΑ του σχήματος μπορεί να στρέφεται γύρω από οριζόντιο άξονα που περνά από το άκρο της Κ, έχει μήκος l, μάζα m και ηρεμεί σε κατακόρυφη θέση. Μια μικρή σφαίρα (υλικό σημείο) της ίδιας μάζας m είναι δεμένη στο άκρο νήματος μήκους 2l το άλλο άκρο του οποίου έχει δεθεί στο σημείο Ο, το οποίο βρίσκεται στην ίδια κατακόρυφο με το Κ και σε ύψος h=l πάνω από αυτό. Εκτρέπουμε τη σφαίρα ώστε το νήμα να γίνει οριζόντιο και την αφήνουμε να κινηθεί. Μετά από λίγο η σφαίρα συγκρούεται στο άκρο Α της ράβδου, έχοντας αποκτήσει οριζόντια ταχύτητα υ, ενώ μετά την κρούση η ράβδος αποκτά γωνιακή ταχύτητα ω.

Θέλοντας να μελετήσουμε την κρούση αυτή, εφαρμόζουμε την αρχή διατήρησης της στροφορμής για το σύστημα των δύο σωμάτων. Τρεις μαθητές έγραψαν τις παρακάτω εξισώσεις:

α) Ο Αντώνης: mυ∙2l=mυ1∙2l+Ιρ,cm∙ω+mυcm∙ 3l/2

β) Ο Βασίλης:  mυ∙l=mυ1∙l + Ιρ,Κ∙ω

γ) Ο Γιάννης: mυ∙ ½ l= mυ1∙ ½ l+ Ιρ,cm∙ω

  1. Ως προς ποιο σημείο (ή άξονα) ο κάθε μαθητής εφάρμοσε την ΑΔΣ;
  2. Ποια ή ποιες από τις παραπάνω εξισώσεις είναι σωστές;

Απάντηση:

ή

%ce%b1%ce%b1%ce%b1%ce%b11 Πώς εφαρμόζουμε την ΑΔΣ;
%ce%b1%ce%b1%ce%b1%ce%b13 Πώς εφαρμόζουμε την ΑΔΣ;
Advertisements

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s