Η περιστροφή ενός τριγώνου

1Τρεις ομογενείς ράβδοι, μήκους l=2m και μάζας 3kg η καθεμιά, συνδέονται, δημιουργώντας ένα ισόπλευρο τρίγωνο πλευρά l. Το τρίγωνο αυτό (στερεό s) μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο άξονα z, ο οποίος περνά από την κορυφή Α και το μέσον της ΒΓ, όπως στο σχήμα.

i) Αν Ιο η ροπή αδράνειας μιας ράβδου ως προς κάθετο άξονα που περνά από το μέσον, να αποδείξετε ότι η ροπή αδράνειας της ράβδου ΑΒ ως προς τον κατακόρυφο άξονα z, δίνεται από την σχέση:

Ιz=4Ιο∙ημ2θ.

    όπου θ η γωνία που σχηματίζει η ράβδος με τον άξονα.

ii) Να υπολογίσετε τη ροπή αδράνειας του στερεού s, ως προς τον άξονα z.

iii) Θέτουμε τη στιγμή t0=0, το στερεό σε περιστροφή ασκώντας στην κορυφή Γ, οριζόντια δύναμη μέτρου F=4Ν, κάθετη στην πλευρά ΒΓ, με φορά προς τα μέσα στο σχήμα.
Να υπολογιστούν τη χρονική στιγμή t1=5s:

α) Η γωνιακή ταχύτητα του στερεού s και η στροφορμή του κατά (ως προς) τον άξονα z.

β) Η κινητική ενέργεια του στερεού, καθώς και ο ρυθμός μεταβολής της κινητικής του ενέργειας.

1-3-600x517iv) Σταματάμε την περιστροφή και αφαιρούμε τον άξονα z. Περνάμε την κορυφή Α σε δεύτερο οριζόντιο άξονα x, γύρω από τον οποίο το στερεό s μπορεί να περιστρέφεται χωρίς τριβές. Φέρνουμε το στερεό σε τέτοια θέση ώστε η πλευρά ΒΓ να είναι κατακόρυφη και το αφήνουμε να κινηθεί. Να υπολογιστεί η αρχική επιτάχυνση (μέτρο και κατεύθυνση) της κορυφής Β.

Δίνεται g=10m/s2, ενώ η ροπή αδράνειας μιας ομογενούς ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιο= (1/12)ml2.

Απάντηση:

ή

%ce%b1%ce%b1%ce%b1%ce%b11  Η περιστροφή ενός τριγώνου
%ce%b1%ce%b1%ce%b1%ce%b13  Η περιστροφή ενός τριγώνου

 

Advertisements

2 thoughts on “Η περιστροφή ενός τριγώνου

  1. Δίνεται g=10m/s2, ενώ η ροπή αδράνειας μιας ομογενούς ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιο= (1/12)ml2.Δίνεται g=10m/s2, ενώ η ροπή αδράνειας μιας ομογενούς ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιο= (1/12)ml2.Δίνεται g=10m/s2, ενώ η ροπή αδράνειας μιας ομογενούς ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιο= (1/12)ml2.Δίνεται g=10m/s2, ενώ η ροπή αδράνειας μιας ομογενούς ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιο= (1/12)ml2.Δίνεται g=10m/s2, ενώ η ροπή αδράνειας μιας ομογενούς ράβδου ως προς κάθετο άξονα που περνά από το μέσον της Ιο= (1/12)ml2.

Σχολιάστε

Συνδεθείτε για να δημοσιεύσετε το σχόλιο σας:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση /  Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση /  Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση /  Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση /  Αλλαγή )

Σύνδεση με %s