Το μέτρο και η αλγεβρική τιμή της μετατόπισης. Φ.Ε.

Μια μικρή σφαίρα, βρίσκεται πάνω σε ένα τραπέζι, σε ένα σημείο Α. Ορίζουμε ένα οριζόντιο σύστημα ορθογωνίων αξόνων x,y όπως στο διπλανό σχήμα, Continue reading «Το μέτρο και η αλγεβρική τιμή της μετατόπισης. Φ.Ε.»

Advertisements

Θέση, μετατόπιση και χρονική στιγμή. Φ.Ε.

Ένα παιδί στέκεται στο σημείο Α ενός ευθύγραμμου δρόμου. Κάποια στιγμή αρχίζει να περπατά και μετά από 150s σταματά στη θέση Β, Continue reading «Θέση, μετατόπιση και χρονική στιγμή. Φ.Ε.»

Μήκος φρεναρίσματος και απόσταση ασφαλείας

Πολύ συχνά γινόμαστε μάρτυρες τροχαίων ατυχημάτων, που οφείλονται σε διάφορους λόγους. Ένα πολύ μεγάλο ποσοστό όμως οφείλεται στο ότι ο οδηγός δεν καταφέρνει να σταματήσει το αυτοκίνητό του, σε περίπτωση που συναντήσει κάποιο κίνδυνο. Φρενάρει μεν, αλλά δεν προλαβαίνει να σταματήσει είτε επειδή η απόσταση που τον χωρίζει από ένα εμπόδιο είναι πολύ μικρή είτε γιατί η ταχύτητά του είναι αρκετά μεγάλη. Ας μελετήσουμε λοιπόν αναλυτικότερα την απόσταση που θα διανύσει ένα αυτοκίνητο από τη στιγμή που αρχίζει να φρενάρει, μέχρι να σταματήσει. Continue reading «Μήκος φρεναρίσματος και απόσταση ασφαλείας»

Θα το προλάβει πριν την στροφή;

Ένα αυτοκίνητο Α είναι ακίνητο στο άκρο ευθύγραμμου δρόμου, απέχοντας κατά L=750m, από μια «διχάλα» του δρόμου που χωρίζεται σε δυο άλλους δρόμους. Κάποια στιγμή περνάει δίπλα του ένα δεύτερο αυτοκίνητο Β, το οποίο κινείται με σταθερή Continue reading «Θα το προλάβει πριν την στροφή;»

Δυο κινήσεις και ένα διάγραμμα

Σε ευθύγραμμο δρόμο, κινούνται πλάι – πλάι δυο αυτοκίνητα Α και Β με την ίδια ταχύτητα υ0. Σε μια στιγμή t0=0 τα αυτοκίνητα περνούν από τη θέση x0=100m, οπότε το Β αποκτά σταθερή επιτάχυνση, ενώ το Α συνεχίζει με την ίδια σταθερή ταχύτητα. Στο διάγραμμα δίνονται οι θέσεις των δύο αυτοκινήτων σε συνάρτηση με το χρόνο.

i) Να βρεθεί το μέτρο της ταχύτητας υ0. Continue reading «Δυο κινήσεις και ένα διάγραμμα»

Εκμετάλλευση ενός διαγράμματος θέσης.

Ένα αυτοκίνητο κινείται ευθύγραμμα και στο διπλανό διάγραμμα δίνεται η θέση του σε συνάρτηση με το χρόνο, όπου η επιτάχυνσή του μετά τη στιγμή t1=5s παραμένει σταθερή. Η μέγιστη απόσταση από την αρχή του άξονα είναι 24m και στη θέση αυτή το αυτοκίνητο φτάνει τη στιγμή t2=7s. Continue reading «Εκμετάλλευση ενός διαγράμματος θέσης.»

Από τις ταχύτητες στις θέσεις

Τρία αυτοκίνητα (α), (β) και (γ)  κινούνται ευθύγραμμα και στο πρώτο σχήμα δίνονται οι ταχύτητές τους σε συνάρτηση με το χρόνο:

Continue reading «Από τις ταχύτητες στις θέσεις»