Ταχύτητες και επιταχύνσεις σε ένα παλμό

Κατά μήκος ενός γραμμικού ελαστικού μέσου (μιας χορδής), το οποίο ταυτίζεται με τον άξονα x και από αριστερά προς τα δεξιά διαδίδεται ο παλμός του διπλανού σχήματος με ταχύτητα υ.

i) Για τις ταχύτητες στη διεύθυνση y των σημείων Α και Β ισχύει: Συνέχεια

Advertisements

Η ενέργεια ενός παλμού.

Στην προηγούμενη ανάρτηση «Η ενέργεια και η ισχύς σε ένα αρμονικό κύμα.» ασχοληθήκαμε με το τι συμβαίνει με την ενέργεια κατά την διάδοση ενός αρμονικού κύματος σε μια χορδή. Συνέχεια

Επιφανειακή συμβολή και φάση.

Στην επιφάνεια ενός υγρού υπάρχουν δύο πηγές εγκαρσίων κυμάτων Π1 και Π2, οι οποίες, κάποια στιγμή t0=0, αρχίζουν να ταλαντώνονται ταυτόχρονα με εξισώσεις:
y1=Α∙ημ(ωt) και y2=Α∙ημ(ωt) 
Έτσι δημιουργούνται επιφανειακά κύματα, τα οποία θεωρούμε ότι διαδίδονται με σταθερά πλάτη και με μήκος κύματος λ=0,8m. Τα κύματα συμβάλουν σε ένα σημείο Ο, το οποίο ταλαντώνεται με πλάτος 0,1m και στο σχήμα δίνεται η φάση της απομάκρυνσής του, σε συνάρτηση με το χρόνο.
i)   Να υπολογιστεί η συχνότητα και η ταχύτητα των κυμάτων που δημιουργούνται.
ii)  Ποιο το πλάτος ταλάντωσης των πηγών και πόσο απέχει το σημείο Ο από τις πηγές των κυμάτων;
iii) Να βρεθεί η διαφορά φάσης μεταξύ της απομάκρυνσης του σημείου Ο και της πηγής Π1 τη χρονική στιγμή t1=3,25s.
iv)  Αν η απόσταση των  δύο πηγών είναι (Π1Π2)=d=0,6m, πόσα σημεία πάνω στο ευθύγραμμο τμήμα που ενώνει την πηγή Π1 και το σημείο Ο, ταλαντώνονται με μέγιστο πλάτος;
ή
Επιφανειακή συμβολή και φάση.

Κοιτάζοντας το παράθυρο, παρατηρούμε τα κύματα.

Κατά μήκος ενός γραμμικού ελαστικού μέσου διαδίδονται με ταχύτητα υ=1m/s δύο κύματα και τη στιγμή t0=0, φτάνουν στα σημεία Ο και Κ, στα άκρα ενός παραθύρου, με (ΟΚ)=4m, το οποίο αποτελεί την περιοχή παρατήρησής μας. Το πλάτος κάθε κύματος είναι Α=0,6m και το μήκος κύματος λ=2m. Συνέχεια

Ένα κύμα, δύο εξισώσεις κύματος

Κατά μήκος ενός γραμμικού ελαστικού μέσου και από τα αριστερά προς τα δεξιά διαδίδεται ένα αρμονικό κύμα και στο σχήμα δίνεται η μορφή του μέσου σε μια στιγμή που θεωρούμε ότι t0=0.

Ταχύτητες σημείων σε δυο κύματα.

Κατά μήκος ενός γραμμικού ελαστικού μέσου το οποίο ταυτίζεται με τον άξονα x διαδίδονται αντίθετα δύο αρμονικά  κύματα α και β, του ίδιου πλάτους και σε μια στιγμή t0=0 η μορφή του μέσου είναι όπως στο σχήμα:

Τη στιγμή αυτή (t0=0) η ταχύτητα ταλάντωσης του σημείου στη θέση x=0, έχει μέτρο υ0=2m/s.
i)  Η ταχύτητα ταλάντωσης του σημείου στη θέση x4=4m, τη στιγμή t0, είναι ίση με:
α) υ4=-2m/s,    β) υ4=+2m/s,  γ) υ4=-4m/s,    δ) υ4=+4m/s.
ii)  Τη χρονική στιγμή t1 που το κύμα α φτάνει στη θέση x΄=3,5m, η ταχύτητα ταλάντωσης
του σημείου Μ στη θέση  xΜ=2,5m είναι ίση με:
α) υΜ=-2m/s,    β) υΜ=+2m/s,  γ) υΜ=-4m/s,    δ) υΜ=+4m/s.
Να δικαιολογήσετε τις απαντήσεις σας.
ή
Ταχύτητες σημείων σε δυο κύματα.

Ένα στάσιμο κύμα ανάμεσα σε δυο σταθερά σημεία.

Μεταξύ  δύο σταθερών σημείων Τ1 και Τβρίσκεται ένα γραμμικό ελαστικό μέσο, μήκους l=3m, στο οποίο έχει δημιουργηθεί ένα στάσιμο κύμα. Ένα σημείο Ο του ελαστικού μέσου απέχει κατά 1,3m από το δεξιό άκρο Τ2 και το λαμβάνουμε ως αρχή ενός συστήματος αξόνων (x,y). Με βάση αυτό το  σύστημα αξόνων,  το στάσιμο κύμα μπορεί να περιγραφεί από μια εξίσωση της μορφής:
y=2 Α∙συν(2πx/λ+φ0)∙ημ(2πt/Τ+θ0)  (1)
όπου τη στιγμή t=0, το σημείο Ο βρίσκεται  σε απομάκρυνση y=-0,1m με μηδενική ταχύτητα. Εξάλλου σε χρονικό διάστημα Δt=0,4s το Ο  εκτελεί δυο πλήρης ταλαντώσεις, ενώ η μέγιστη ταχύτητα που αποκτά μια κοιλία του μέσου έχει μέτρο υmax=2π m/s.
i)  Να βρεθεί η συχνότητα και το πλάτος ταλάντωσης μιας κοιλίας του μέσου.
ii) Ποιες οι δυνατές τιμές της γωνίας φ0  που περιλαμβάνεται στην παραπάνω εξίσωση;.
iii) Αν φ0=π/3 rad να υπολογιστεί η ταχύτητα διάδοσης ενός κύματος κατά μήκος του μέσου αυτού, αν μεταξύ του σημείου Ο και του σημείου πρόσδεσης Τυπάρχουν δύο σημεία του μέσου που παραμένουν ακίνητα.
iv) Να βρεθεί η εξίσωση του στάσιμου κύματος.
v)  Να παρασταθούν στιγμιότυπα του στάσιμου κύματος τις χρονικές στιγμές t1=0 και t2=0,125 s, στο ίδιο σύστημα αξόνων.
ή
Ένα στάσιμο κύμα ανάμεσα σε δυο σταθερά σημεία.